--- title: "MarkerPen: Marker Gene Detection via Penalized Principal Component Analysis" author: "Yixuan Qiu, Jiebiao Wang, Jing Lei, and Kathryn Roeder" date: "`r Sys.Date()`" output: prettydoc::html_pretty: theme: cayman highlight: github toc: true vignette: > %\VignetteIndexEntry{MarkerPen: Marker Gene Detection via Penalized Principal Component Analysis} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ## Introduction The `markerpen` R package uses penalized principal component analysis to detect cell-type-specific marker genes from bulk tissue RNA sequencing data. It is a semi-supervised algorithm that uses bulk transcriptome data to refine a prior marker gene list. ## Installation `markerpen` can be installed directly from CRAN: ```r install.packages("markerpen") ``` A C++ compiler that supports the C++11 standard is needed to install `markerpen` from source. For best performance, it is **strongly suggested** linking your R to the [OpenBLAS](https://www.openblas.net/) library for matrix computation, although this step is optional. You can achieve this with the help of the [ropenblas](https://prdm0.github.io/ropenblas/) package. ## Example In this section we show a real example of selecting marker genes from bulk tissue RNA sequencing data. First, read in the data file located in the `examples` folder: ```{r data} library(markerpen) library(scales) # A subset of the ROSMAP data # Subsampled from the geneExprRaw.txt file located in # https://github.com/ellispatrick/CortexCellDeconv/tree/master/CellTypeDeconvAnalysis/Data load(system.file("examples", "gene_expr.RData", package = "markerpen")) # Convert gene name to Ensembl name ind = match(rownames(dat), markerpen::gene_mapping$name) ind = na.omit(ind) ensembl = markerpen::gene_mapping$ensembl[ind] # Get expression matrix - rows are observations, columns are genes mat_exp = t(dat[markerpen::gene_mapping$name[ind], ]) colnames(mat_exp) = ensembl print(mat_exp[1:5, 1:5]) ``` Next, read in the prior marker gene lists, collected from the published literature. We also restrict the search range for each cell type to a subset of the whole genome. The two R data files are provided in the `examples` folder. ```{r marker_list} # Read in prior marker genes load(system.file("examples", "published_markers.RData", package = "markerpen")) load(system.file("examples", "markers_range.RData", package = "markerpen")) ``` Below is the main part of the analysis: selecting marker genes for major cell types. After obtaining the marker genes for one cell type, we remove those genes from the search range for the next cell type, in order to make markers for different cell types non-overlapping. Theoretically the order of the cell types in computing has an impact on the final result, but in practice the impact is small if the cell types can be well separated. ```{r refine, eval=FALSE} # Markers for astrocytes ast_re = refine_markers(mat_exp, markers_range$astrocytes, pub_markers$astrocytes, lambda = 0.45, w = 1.5, maxit = 500, eps = 1e-3, verbose = 0) # Remove selected markers from the expression matrix mat_rest = mat_exp[, setdiff(colnames(mat_exp), ast_re$markers)] # Markers for oligodendrocytes oli_re = refine_markers(mat_rest, markers_range$oligodendrocytes, pub_markers$oligodendrocytes, lambda = 0.45, w = 1.5, maxit = 500, eps = 1e-3, verbose = 0) mat_rest = mat_rest[, setdiff(colnames(mat_rest), oli_re$markers)] # Markers for microglia mic_re = refine_markers(mat_rest, markers_range$microglia, pub_markers$microglia, lambda = 0.45, w = 1.5, maxit = 500, eps = 1e-3, verbose = 0) mat_rest = mat_rest[, setdiff(colnames(mat_rest), mic_re$markers)] # Markers for endothelial end_re = refine_markers(mat_rest, markers_range$endothelial, pub_markers$endothelial, lambda = 0.45, w = 1.5, maxit = 500, eps = 1e-3, verbose = 0) mat_rest = mat_rest[, setdiff(colnames(mat_rest), end_re$markers)] # Markers for neurons neu_re = refine_markers(mat_rest, markers_range$neurons, pub_markers$neurons, lambda = 0.45, w = 1.5, maxit = 500, eps = 1e-3, verbose = 0) # Refined markers markers_re = list(astrocytes = ast_re$markers, oligodendrocytes = oli_re$markers, microglia = mic_re$markers, endothelial = end_re$markers, neurons = neu_re$markers) ``` ```{r precompute-refine, echo=FALSE} # Computing the refined markers may be slow on some machines # So we load the pre-computed data load(system.file("examples", "refined_markers.RData", package = "markerpen")) ``` We post-process the selected genes by ordering them and selecting the top 50 markers for each cell type. ```{r order} # Post-process selected markers # Pick the first 50 ordered markers cor_markers = cor(mat_exp[, unlist(markers_re)]) markers_ord = sort_markers(cor_markers, markers_re) markers_ord = lapply(markers_ord, head, n = 50) ``` Finally, visualize the sample correlation matrices on published markers and refined markers. ```{r} # Function to visualize the sample correlation matrix vis_cor = function(mat_exp, markers) { all_genes = colnames(mat_exp) markers = intersect(unlist(markers), all_genes) cor_markers = cor(mat_exp[, unlist(markers)]) p = nrow(cor_markers) cols = c("#08306b", "#08519c", "#2171b5", "#6baed6", "#9ecae1", "#c6dbef", "#deebf7", "#ffffff", "#fcf1f1", "#fae1e1", "#facdcd", "#f49c9c", "#f56566", "#f13a3c", "#d00003") ncols = length(cols) cols = scales::gradient_n_pal(cols, values = (0:ncols) / ncols)((1:100) / 100) op = par(mar = c(0, 0, 0, 0)) image(cor_markers[, p:1], col = cols, breaks = (-50:50) / 50, asp = 1, axes = FALSE) par(op) } ``` Published markers: ```{r fig.align='center'} vis_cor(mat_exp, pub_markers) ``` Refined markers: ```{r fig.align='center'} vis_cor(mat_exp, markers_re) ``` Ordered top 50 markers for each cell type: ```{r fig.align='center'} vis_cor(mat_exp, markers_ord) ```